Preparation of BiVO4@Fiber Composites and the Photocatalytic Property for Degradation of Organic Dyes under Visible-Light

نویسندگان

  • Wei Lu
  • Deshuang Yu
  • Xiaochen Zhou
  • Yan Zhang
  • Jianqiang Yu
چکیده

In this article, a novel BiVO4@fibers composite photocatalyst was prepared by a process that monoclinic scheelite BiVO4 nano/micro particles were in situ formated onto fiber materials. The structure, morphology and photophysical properties of the composite materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy, respectively. The immobilization of BiVO4 photocatalyst on fibers reduced the particle size of the photoactive phase, and a few visible-light absorption abilities. The decomposition of a non-biodegradable dye Red FN-3G was selected to examine the photocatalytic activity of the composite photocatalyst. It was found that the formation of composite materials of BiVO4 with fibers didn’t decrease the photocatalytic activity with comparison to that of pure BiVO4. Moreover, it demonstrated that when adjusting the dye solution into about pH = 3, the highest efficiency of dye degradation over the fiber composite material can be obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of BiVO4 nanoparticles by the co-precipitation method and study the crystal structure, optical and photocatalytic properties of them

In this paper, the bismuth vanadate (BiVO4) nanoparticles were synthesized at 600 °C calcination temperature by co-precipitation method. To study the crystal structure, morphology, optical and photocatalytic properties of the samples, the X-ray diffraction analysis, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy and ult...

متن کامل

Comparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light

The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...

متن کامل

Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...

متن کامل

Visible light induced photocatalytic degradation of direct red 23 and direct brown 166 by InVO4-TiO2 nanocomposite

The effect of various parameters (pH, irradiation time, nanophotocatalyst dosages and temperature) on photocatalytic degradation of Direct Red 23 (DR 23) and Direct Brown 166 (DB 166) using pure InVO4 and InVO4-TiO2 nanocomposite were investigated under visible light irradiation. InVO4 and InVO4-TiO2 wer...

متن کامل

Photocatalytic Degradation of Methylene Blue by Innovative BiVO4/TiO2 Composite Films under Visible Light Irradiation

Bismuth vanadate and titanium dioxide (BiVO4/TiO2) composites, used as visible-light-driven photocatalysts were successfully synthesized with different mole ratios by coupling of a co-precipitation method with a sol-gel method. The phase transitions of the as-prepared BiVO4/TiO2 composites were carried out by X-ray diffraction (XRD). The results clearly indicated that the as-synthesized BiVO4/T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011